A new model predicting locomotor cost from limb length via force production.

نویسنده

  • Herman Pontzer
چکیده

Notably absent from the existing literature is an explicit biomechanical model linking limb design to the energy cost of locomotion, COL. Here, I present a simple model that predicts the rate of force production necessary to support the body and swing the limb during walking and running as a function of speed, limb length, limb proportion, excursion angle and stride frequency. The estimated rate of force production is then used to predict COL via this model following previous studies that have linked COL to force production. To test this model, oxygen consumption and kinematics were measured in nine human subjects while walking and running on a treadmill at range of speeds. Following the model, limb length, speed, excursion angle and stride frequency were used to predict the rate of force production both to support the body's center of mass and to swing the limb. Model-predicted COL was significantly correlated with observed COL, performing as well or better than contact time and Froude number as a predictor of COL for running and walking, respectively. Furthermore, the model presented here predicts relationships between COL, kinematic variables and body size that are supported by published reduced-gravity experiments and scaling studies. Results suggest the model is useful for predicting COL from anatomical and kinematic variables, and may be useful in intra- and inter-specific studies of locomotor anatomy and performance.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Predicting the energy cost of terrestrial locomotion: a test of the LiMb model in humans and quadrupeds.

The energy cost of terrestrial locomotion has been linked to the muscle forces generated to support body weight and swing the limbs. The LiMb model predicts these forces, and hence locomotor cost, as a function of limb length and basic kinematic variables. Here, I test this model in humans, goats and dogs in order to assess the performance of the LiMb model in predicting locomotor cost for bipe...

متن کامل

Afferent control of locomotor CPG: insights from a simple neuromechanical model.

A simple neuromechanical model has been developed that describes a spinal central pattern generator (CPG) controlling the locomotor movement of a single-joint limb via activation of two antagonist (flexor and extensor) muscles. The limb performs rhythmic movements under control of the muscular, gravitational and ground reaction forces. Muscle afferents provide length-dependent (types Ia and II)...

متن کامل

Effective limb length and the scaling of locomotor cost in terrestrial animals.

Relative to body size, smaller animals use more energy to travel a given distance than larger animals, but the anatomical variable driving this negative allometry remains the subject of debate. Here, I report a simple inverse relationship between effective limb length (i.e. hip height) and the energy cost of transport (COT; J kg(-1) m(-1)) for terrestrial animals. Using published data for a div...

متن کامل

Scale Effects between Body Size and Limb Design in Quadrupedal Mammals

Recently the metabolic cost of swinging the limbs has been found to be much greater than previously thought, raising the possibility that limb rotational inertia influences the energetics of locomotion. Larger mammals have a lower mass-specific cost of transport than smaller mammals. The scaling of the mass-specific cost of transport is partly explained by decreasing stride frequency with incre...

متن کامل

A unified theory for the energy cost of legged locomotion.

Small animals are remarkably efficient climbers but comparatively poor runners, a well-established phenomenon in locomotor energetics that drives size-related differences in locomotor ecology yet remains poorly understood. Here, I derive the energy cost of legged locomotion from two complementary components of muscle metabolism, Activation-Relaxation and Cross-bridge cycling. A mathematical mod...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • The Journal of experimental biology

دوره 208 Pt 8  شماره 

صفحات  -

تاریخ انتشار 2005